OOO «ΜИ Γрупп» www.alumcenter.ru (495) 765-56-58

Методика статических расчетов оконных или дверных блоков

Стр. 1

Методика статических расчетов оконных или дверных блоков

Ветровая нагрузка, действующая на **оконные или дверные блоки**, воспринимается несущими элементами - профилями рамы и импостов, а нагрузка от собственного веса профилей и заполнения при открывающемся оконном или дверном блоке воспринимается створкой и через элементы фурнитуры передается на несущие элементы (профили рамы или импоста). В случае глухого остекления собственный вес профилей и заполнения воспринимается рамным профилем и горизонтальным импостом.

Ветровая нагрузка, действующая на элементы оконных и дверных блоков рассчитывается по СНиП 2.01.07-85* "Нагрузки и воздействия", в зависимости от ветрового района, типа местности и высоты здания.

Вычисление требуемого момента инерции производится по формуле:

$$J_x = \frac{W \times L^4 \times B \times [25 - 40(B/L)^4]}{1920 \times E \times f,}$$

где W - давление ветра, Па;

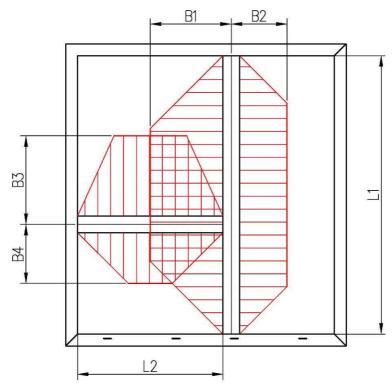
В - ширина эпюры нагружения, см;

L - длина профиля, см;

Е - модуль упругости алюминия, $7,1*10^5$ Па;

f - максимально допустимая деформация, см; в общем случае f = L/300. Для стеклопакета с периметром более 240 см, f = 0,8 см.

Момент инерции, вычисляемый по данной формуле должен быть определен раздельно для каждой области нагрузки. Области нагрузки, расположенные справа и слева, не должны складываться.


Моменты инерции рассчитываются отдельно для каждой из составляющих и только потом суммируются.

На основании вычисленных требуемых моментов инерции для каждого профиля, по каталогу подбираем профиль с моментом инерции равным или большим требуемого.

OOO «МИ Групп» www.alumcenter.ru (495) 765-56-58

Методика статических расчетов оконных или дверных блоков

Стр. 2

Вычисление требуемого момента инерции горизонтальных импостов на прогиб от веса заполнения выполняется из условия $f_{\text{факт}} < f_{\text{доп}}$, где

 $f_{\text{доп}}$ - допускаемый прогиб горизонтального импоста. Эта величина принимается 0,3 см (с некоторым запасом, исходя из технологических ограничений).

 $f_{\phi a \kappa \tau}$ - фактический прогиб для средней однопролетной балки (импоста) со свободными опорами и сосредоточенной нагрузкой.

Фактический прогиб вычисляется по формуле:

$$f_{\phi a \kappa T} = (F \times a^3/(24 \times E \times J)) \times (3 \times B^2/a^2 - 4).$$

Откуда требуемый момент инерции горизонтального импоста равен:

$$J_v \ge (F \times a^3/(24 \times E \times f)) \times (3 \times B^2/a^2 - 4)$$

где E - модуль упругости алюминия, $7.1*10^5$ Па;

В - длина горизонтального импоста, см;

а - расстояние от края горизонтального импоста до оси подкладки под заполнение, см;

f доп - допустимый прогиб горизонтального импоста, см;

 $F = F_{\text{запол}}/2$, кгс;

 $F_{\text{запол}} = B x H x S x g$ - нагрузка от заполнения, кгс;

Н - высота заполнения, см;

S - суммарная толщина заполнения (стекла), см;

g - удельный вес заполнения (для стекла = 0,0025), кгс/см³;

На основании вычисленных требуемых моментов инерции для каждого профиля, по каталогу подбираем профиль с моментом инерции равным или большим требуемого.

ООО «МИ Групп»www.alumcenter.ru (495) 765-56-58

Методика статических расчетов оконных или дверных блоков

Стр. 3

Расчётное значение средней составляющей ветровой нагрузки на высоте z над поверхностью земли определяется по формуле: $\mathbf{W} = \mathbf{Wo} * \mathbf{k}$,

где Wo-нормативное значение ветровой нагрузки, принимаемое по таблице ветрового района $P\Phi$,

k-коэффициент учитывающий изменение ветрового давления по высоте, определяется по таблице, в зависимости от типа местности.

Коэффициент k, учитывающий изменение ветрового давления по высоте z, определяется по табл. в зависимости от типа местности. Принимаются следующие типы местности:

- А открытые побережья морей, озер и водохранилищ, пустыни, степи, лесостепи, тундра;
- В городские территории, лесные массивы и другие местности, равномерно покрытые препятствиями высотой более 10 м;
- С городские районы с застройкой зданиями высотой более 25 м. Сооружение считается расположенным в местности данного типа, если эта местность сохраняется с наветренной стороны сооружения на расстоянии 30h при высоте сооружения h до 60 м и 2 км при большей высоте.

Высота z, м	Коэффициент k для типов местности						
	A	В	С				
≤ 5	0,75	0,50	0,40				
10	1,00	0,65	0,40				
20	1,25	0,85	0,55				
40	1,50	1,10	0,80				
60	1,70	1,30	1,00				
80	1,85	1,45	1,15				
100	2,00	1,60	1,25				
150	2,25	1,90	1,55				
200	2,45	2,10	1,80				
250	2,65	2,30	2,00				
300	2,75	2,50	2,20				
350	2,75	2,75	2,35				
≥ 480	2,75	2,75	2,75				

Примечание. При определении ветровой нагрузки типы местности могут быть различными для разных расчетных направлений ветра.

OOO «MИ Групп» www.alumcenter.ru

Методика статических расчетов оконных или дверных блоков

(495) 765-56-58

Таблица определения ветровой нагрузки местности

Ветровой район	Ia	I	II	III	IV	V	VI	VII
Ветровая нагрузка Wo (кгс/м2)	17	23	30	38	48	60	73	85

